Package 'COMA'

October 1, 2024

Title Convex Optimization of Mate Allocation Version 0.19 Author Jeffrey B. Endelman Maintainer Jeffrey Endelman <endelman@wisc.edu> Description Convex Optimization of Mate Allocation Depends R (>= 4.0) License GPL-3 RoxygenNote 7.2.3 Encoding UTF-8 Imports ggplot2, CVXR, tidyr Suggests knitr, rmarkdown, Rmosek

R topics documented:

ocs	 	 1
oma	 	
plot_ribbon	 	
read_data	 	 4

6

Index

```
ocs
```

Optimal Contribution Selection

Description

Optimize the contribution of each individual to the next generation

Usage

```
ocs(dF, parents, ploidy, K, tol = 1e-06, dF.adapt = NULL, solver = "ECOS")
```

Arguments

dF	inbreeding rate
parents	input data frame (see Details)
ploidy	ploidy
К	kinship matrix
tol	tolerance, values below this set to 0
dF.adapt	see Details
solver	solver for CVXR (default is "ECOS")

Details

The first four columns of parents should be named as follows: id, merit, min, max. Min and max are real numbers between 0 and 1 specifying the minimum and maximum contribution for each parent. An optional fifth column named "female" is a logical TRUE/FALSE variable for species with separate sexes.

Additional columns can be used to specify constraints on linear combinations of the contributions. The values are the coefficients of the contribution variables, and the name of each column specifies the right-hand side of the constraint. Each name must begin with "lt", "gt", or "eq", followed by a non-negative numeric value. For example, "lt0.5" means less than or equal to 0.5.

The average inbreeding coefficient of the current generation is based on all individuals in K, which may exceed the list of individuals in parents.

It is possible that no feasible solution exists for the specified dF. Argument dF.adapt can be used to automatically increase dF by dF.adapt\$step up to dF.adapt\$max.

Value

list containing

response data.frame with realized dF, merit, n.parent **oc** data frame of optimal contributions

oma

Optimal Mate Allocation

Description

Optimize the allocation for each mating

Usage

```
oma(
    dF,
    parents,
    matings,
    ploidy,
    K,
    tol = 1e-06,
    dF.adapt = NULL,
    solver = "ECOS"
)
```

plot_ribbon

Arguments

dF	inbreeding rate
parents	parents data frame (see Details)
matings	matings data frame (see Details)
ploidy	ploidy
К	kinship matrix
tol	tolerance, values below this set to 0
dF.adapt	see Details
solver	solver for CVXR (default is "ECOS")

Details

Originally, only an upper bound was placed on the average kinship of the progeny, according to dF. As of package v0.19, both lower and upper bounds are allowed by passing a vector of length 2. When a single number is supplied, it is interpreted as equal lower and upper bounds.

The first three columns of parents should be named "id", "min", "max", with an optional fourth column "female" to indicate sex in dioecious species. Additional columns can be used to specify constraints on linear combinations of the contributions. The values are the coefficients of the contribution variables, and the name of each column specifies the right-hand side of the constraint. Each name must begin with "lt", "gt", or "eq", followed by a non-negative numeric value. For example, "lt0.5" means less than or equal to 0.5.

The data.frame matings has five columns: "female, male, merit, min, max" for dioecious species, or else "parent1, parent2, merit, min, max".

The average inbreeding coefficient of the current generation is based on all individuals in K, which may exceed the list of individuals in parents.

It is possible that no feasible solution exists for the specified dF. Argument dF.adapt can be used to automatically increase the upper bound by dF.adapt\$step up to dF.adapt\$max.

Value

list containing

response data.frame with realized dF, merit, n.parent, n.mate

oc data frame of optimal contributions for each individual

om data frame of optimal allocations for each mating

plot_ribbon

Ribbon Plot of Optimal Contributions

Description

Ribbon Plot of Optimal Contributions

Usage

plot_ribbon(oc, min.c = 0.001)

Arguments

ос	named list of optimal contributions
min.c	minimum contribution for plotting

Details

The inbreeding rates are taken from the names of oc. Each element of oc should be a data frame with columns "id" and "value".

Value

ggplot2 object

read_data

Read data for OCS/OMA

Description

Predicts merit for OCS/OMA

Usage

```
read_data(
  geno.file,
  kinship.file,
  ploidy,
  sex = NULL,
  matings = "none",
  standardize = FALSE,
  n.core = 1,
  partition = FALSE
)
```

Arguments

geno.file	file with marker effects and genotypes
kinship.file	file with kinship matrix
ploidy	even integer
sex	optional, data frame with columns id and female (T/F)
matings	see Details
standardize	T/F, standardize merit based on additive std. dev.
n.core	multi-core evaluation
partition	T/F, partition matings as MPA, MPD, MPH for dominance model

read_data

Details

The first column of geno.file is the marker name. The second column contains the additive effects for the breeding value parameterization, and (digenic) dominance effects (when available) should be in the third column with the header "dom". Subsequent columns contain the marker data for the population, coded as allele dosage, from 0 to ploidy. Missing marker data is imputed with the population mean.

The kinship.file should contain an N x N kinship matrix with id names in the first column and row.

There are several options for argument matings: (1) "none" = no matings; (2) "all" = all possible matings of the individuals in geno.file (excluding reciprocals); (3) a character vector of genotype ids to calculate all pairs of matings; (4) a 2-column data.frame of desired matings with header "female", "male" for dioecious species (separate sexes) or "parent1", "parent2" for hermaphrodites. Self-matings are included under options (2) and (3) for dioecious species but are easily removed in the output if desired.

Value

list containing

K kinship matrix

parents data frame of individual merits

matings data frame of mating merits

Index

ocs,1 oma,2

plot_ribbon, 3

read_data,4