Package 'MapRtools'

February 17, 2025

Title Tools for genetic mapping Version 0.35 Author Jeffrey B. Endelman Maintainer Jeffrey Endelman <endelman@wisc.edu> Description Tools for genetic mapping Depends R (>= 4.0) License GPL-3 LazyData true RoxygenNote 7.3.2 Encoding UTF-8 Imports ggplot2, scam, seriation, CVXR, Matrix, HMM, splines2 Suggests knitr, rmarkdown VignetteBuilder knitr

Contents

EGQ	2
genetic_map	2
interpolate_cM	3
inverse_map_fn	4
LDbin	4
LG	5
LGtrim	5
LL	6
map_fn	6
MLEL	7
order_markers	7
plot_coverage	8
plot_geno	8
plot_genoprob	9
plot_haplofreq	0
plot_LD	С
plot_map	1
plot_square	2
rabbit diallel	2
rabbit_read	3

genetic_map

ex		15
	S1_selection	14
	S1_haplo	

Index

```
EGQ
```

Expected Genotype Quality

Description

Expected Genotype Quality for Binomial Model

Usage

EGQ(DP, error, prior)

Arguments

DP	read depth
error	allelic error
prior	numeric vector of length ploidy + 1

Details

Expected GQ conditional on the true allele dosage (0,1,2,...ploidy)

Value

```
numeric vector of length ploidy + 1
```

genetic_map

Multi-point estimation of a genetic map

Description

Multi-point estimation of a genetic map

Usage

genetic_map(x, LOD, n.point = 5)

Arguments

х	matrix of pairwise map distances (cM) between the marker-bins for one chro-
	mosome
LOD	matrix of LOD scores between marker-bins
n.point	Number of points used for estimation

2

interpolate_cM

Details

Uses LOD-score weighted least-squares regression method described by Stam (1993). Markers must be binned (e.g., using LDbin) for this function to work properly. Argument n.point controls how many pairwise distances are used in the linear regression. n.point=2 means only adjacent bins; n.point=3 means adjacent bins and bins with one intervening marker, etc. Marker names taken from the rownames attribute of x.

Value

data frame with columns marker, position (in cM)

interpolate_cM Interpolate genetic distances

Description

Creates monotone spline between physical (bp) and genetic (cM) distance

Usage

interpolate_cM(map, df = 8, max.extend = 5)

Arguments

map	Data frame with four columns: marker, chrom, bp, cM
df	Degrees of freedom for the spline
max.extend	Maximum distance (in cM) to extrapolate beyond the end of the input map

Details

The input map can be generated by merging an existing genetic map with positions in bp and cM with additional markers with only bp information. Interpolation is based on minimizing the mean-squared error between the original and interpolated positions in cM. For the df and max.extend parameters, use either a single integer (if same for all chromosomes) or a vector of length equal to the number of chromosomes.

Value

List containing

map Map data frame with additional column named cM.spline

plot ggplot2 object

inverse_map_fn Inverse map function

Description

Computes recombination frequency from map distance

Usage

inverse_map_fn(x, model)

Arguments

х	map distance (cM)
model	Either "Haldane" or "Kosambi"

Value

recombination frequency

```
LDbin
```

Create marker bins based on LD

Description

Create marker bins based on LD

Usage

LDbin(geno, r2.thresh = 0.99)

Arguments

geno	matrix of haplotype dosages (markers x indiv)
r2.thresh	threshold for binning

Details

Bins are created based on hierarchical clustering with hclust and method='single', using $1 - r^2$ as the dissimilarity metric. The argument r2. thresh controls the height for cutting the dendrogram to create the bins. The marker with the least missing data for each bin is chosen to represent it.

Value

List containing

bins data frame with two columns: marker,bin

geno genotype matrix for the bins

r2 r2 matrix for the bins

Description

Make linkage groups based on clustering

Usage

```
LG(LODmat, thresh = seq(2, 20, by = 2))
```

Arguments

LODmat	matrix of LOD scores for the marker bins
thresh	numeric vector of thresholds for clusterings

Details

If thresh is a numeric vector with multiple LOD thresholds, the function returns a plot showing the number of markers per LG. If thresh is a single value, the function returns a data frame with the LG assignment for each marker. LGs are numbered from the largest to smallest group.

Value

Either a ggplot2 object or data frame of linkage groups (see Details)

LGtrim	Trim a linkage group based on genotype frequencies	

Description

Trim a linkage group based on genotype frequencies

Usage

LGtrim(geno, LODmat, thresh)

Arguments

geno	matrix of haplotype dosages (markers x samples)
LODmat	matrix of LOD scores for the markers
thresh	numeric vector of thresholds for clusterings

Details

This function should only be run on a single linkage group (to form the linkage groups, use LG. If thresh is a numeric vector with multiple LOD thresholds, the function returns a plot showing the impact of the threshold on genotype frequencies. If thresh is a single value, the function returns a vector of the marker names that are retained. The rownames of geno and LODmat must match.

LG

Value

Either a ggplot2 object or a vector of marker names (see Details)

LL

Log-likelihood for mapping populations

Description

Log-likelihood for mapping populations

Usage

LL(r, counts, pop.type)

Arguments

r	recombination frequency
counts	3x3 contingency table for haplotype dosages 0,1,2
pop.type	One of the following: "DH", "BC", "F2", "S1r", "RIL.self", "RIL.sib"

Details

The argument counts can be constructed using the table function for two markers. Genotype coding must represent dosage of a founder haplotype. For BC populations, possible allele dosages are 0,1. For DH and RIL pops, it is 0,2. For F2 and S1 pops, it is 0,1,2. S1r is an S1 population with the 1 alleles in repulsion phase.

Value

log-likelihood

map_fn

Map functions

Description

Computes cM map distance from recombination frequency

Usage

map_fn(r, model)

Arguments

r	recombination frequency
model	Either "Haldane" or "Kosambi"

Value

Map distance in cM

MLEL

Description

Max Likelihood Estimation of Linkage

Usage

MLEL(geno, pop.type, LOD, n.core = 1, adjacent = FALSE)

Arguments

geno	Matrix of haplotype dosages (markers x indiv)
pop.type	One of the following: "DH", "BC", "F2", "S1", "RIL.self", "RIL.sib"
LOD	Logical, whether to return LOD (TRUE) or recomb freq (FALSE)
n.core	For parallel execution on multiple cores
adjacent	Logical, should calculation be done for all pairs (FALSE) or adjacent (TRUE) markers

Details

Can be used to estimate either the LOD score or recombination frequency, depending on the value of LOD. Genotype coding must represent dosage of a founder haplotype. For BC populations, possible allele dosages are 0,1. For DH and RIL pops, it is 0,2. For F2 and S1 pops, it is 0,1,2.

Value

If adjacent is FALSE, a matrix of recombination frequencies or LOD scores; otherwise, a threecolumn data frame with marker, the LOD or r value, and the phase ("c","r") with the previous marker

order_markers Order markers by solving the TSP

Description

Order markers by solving the TSP

Usage

order_markers(x)

Arguments

x distance matrix

Details

Uses R package seriation to minimize the distance between adjacent markers. For example, x could be a matrix of recombination frequencies or monotone decreasing transformation of LOD scores.

Value

a list containing

order optimized order as a vector of integers **distance** sum of adjacent distances

plot_coverage Plot marker coverage of the genome

Description

Plot marker coverage of the genome

Usage

plot_coverage(map, limits = NULL)

Arguments

map	data frame with columns chrom & position
limits	optional data frame with columns chrom & position, with the maximum length
	for each chromosome

Details

If limits not provided, then the maximum values in map are used.

Value

ggplot2 variable

plot_geno

Graphical genotyping

Description

Graphical genotyping

Usage

plot_geno(geno, map = NULL)

plot_genoprob

Arguments

geno	genotype matrix (markers x indiv)
map	optional data frame with 3 columns (marker, chrom, position)

Details

Input matrix geno should have rownames attribute that matches marker names in the first column of map (when present).

Value

ggplot object

plot_genoprob

Plot genotype probabilities for one chromosome

Description

Plot genotype probabilities for one chromosome

Usage

```
plot_genoprob(genoprob, map = NULL)
```

Arguments

genoprob	matrix (markers x genotypes) of probabilities for one individual
map	optional data frame with 3 columns (marker, chrom, position)

Details

Names for the genotypes are taken from the colnames of genoprob.

Value

ggplot object

plot_haplofreq

Description

Plot and filter markers based on haplotype frequency vs position

Usage

```
plot_haplofreq(geno, thresh = 0.1, span = 0.3)
```

Arguments

geno	haplotype dosage matrix (markers x indiv)
thresh	threshold for removing markers (see Details)
span	parameter to control degree of smoothing for spline (higher = less smooth)

Details

This functions works for mapping populations derived from two inbred founders. The geno matrix must be coded based on the dosage (0,1,2) of one founder haplotype.

Markers are removed if their residual to the fitted spline exceeds thresh. Markers are assumed to be ordered. Function designed to be used for one chromosome.

Value

List containing

outliers index of outlier markers **plot** ggplot2 variable

plot_LD

Plot LD vs distance

Description

Plot LD vs distance

Usage

plot_LD(r2, map, max.pair = 10000, dof = 8)

Arguments

r2	squared correlation matrix
map	data frame with 3 columns (marker, chrom, position)
max.pair	maximum number of r2 pairs for the spline
dof	degrees of freedom for the spline

plot_map

Details

A monotone decreasing, convex spline is fit using R package scam. The input matrix r^2 should have rownames attribute that matches marker names in the first column of map.

Value

List containing

plot ggplot object

spline data frame with fitted values for the spline

plot_map

Plot data against position and curate based on trend

Description

Plot data against position and curate based on trend

Usage

```
plot_map(data, thresh = NULL, span = 0.3)
```

Arguments

data	data frame with 3 columns: chrom, position, plotting variable
thresh	threshold for removing markers (see Details)
span	smoothing parameter for loess spline (higher = less smooth)

Details

For data from a single chromosome, markers are removed when their residual to the fitted spline exceeds thresh. If NULL, no curation occurs.

Value

ggplot List containing outliers outlier positions plot ggplot2 variable plot_square

Description

Plot square (dis)similarity matrix

Usage

```
plot_square(data, lims = NULL)
```

Arguments

data	square matrix
lims	numeric 3-vector with the low,mid,high points for the colors

Details

Can be used to plot squared correlation, recomb frequency, LOD and more. By default, lims equals (0,median,max)

Value

ggplot2 variable

rabbit_diallel Make RABBIT input files for diploid diallel population

Description

Make RABBIT input files for diploid diallel population

Usage

rabbit_diallel(ped, geno, geno.founder, map, outstem)

Arguments

ped	data frame with pedigree (pop,parent1,parent2)
geno	list of genotype matrices (markers x indiv), one for each population in ped
geno.founder	matrix of genotype data for the founders (markers x indiv)
map	genetic map (marker, chromosome, position)
outstem	name for output files

Details

Populations must be numbered in ped corresponding to their position in geno. Founders are not included in ped. All genotype matrices must have identical markers. Genetic map position should be in cM. Genotypes need to be coded according to RABBIT format.

rabbit_read

Description

Parse output from RABBIT MagicReconstruct

Usage

```
rabbit_read(rabbit.file, ML.file = NULL, diaQTL.file = NULL)
```

Arguments

rabbit.file	name of RABBIT output file
ML.file	name of most likely genotype file to create
diaQTL.file	name of diaQTL genotype file to create

Details

Two different file formats can be created. The ML.file contains the most likely (i.e., posterior maximum) genotype for each individual at each marker. The diaQTL.file contains the full distribution of genotype probabilities in the format required by the diaQTL R package (diaQTL.file). The default value for each filename is NULL, which generates no file.

Value

data frame defining the genotypes

S1_haplo	Phase S1 parent and reconstruct progeny in terms of parental haplo-
	types

Description

Phase S1 parent and reconstruct progeny in terms of parental haplotypes

Usage

S1_haplo(geno, r, error)

Arguments

geno	ordered genotype matrix (markers x indiv) for one chromosome
r	average recombination frequency to use for the HMM
error	average genotype error to use for the HMM

Details

It is assumed that only segregating markers are present. Progeny reconstruction occurs using an HMM with a uniform transition probability matrix, based on an average recombination frequency r, and a uniform model for the genotype error.

Value

List containing

parent two column matrix (rows = markers) with the haplotypes for the parent

progeny matrix with progeny reconstructed based on dosage of the second parental haplotype

S1_selection

Signatures of selection in S1 populations

Description

Signatures of selection in S1 populations

Usage

S1_selection(data, alpha = 0.05)

Arguments

data	data frame with columns: marker, chrom, position, AA, AB, BB. Columns 4-6
	have count data.
alpha	significance level

Details

Genotypes must be coded based on the S1 parental haplotypes, not markers.

The null hypothesis is no selection, in which case the expected frequency of genotypes is (AA = 1/4, AB = 1/2, BB = 1/4). Two alternate hypotheses are tested for gametic selection: 1.selection in one sex, 2.selection in both sexes. Two models of zygotic selection are also tested: 1.selection against one homozygote, 2.selection against both homozygotes. The selection coefficient equals the sum of the absolute differences between the observed and expected frequencies. Positive values correspond to selection against A or AA, negative values for selection against B or BB. For zygotic2, positive (negative) values represent selection against (for) homozygotes.

P-values are computed based on the likelihood ratio test; in other words, the change in deviance is assumed to be chi-squared distributed under the null hypothesis.

Value

list with "plot" and "table" of results:

model name of best model

s selection coefficient

score -log10(p) value

Index

EGQ, 2 genetic_map, 2 interpolate_cM, 3 inverse_map_fn,4 LDbin, 3, 4 LG, 5, 5 LGtrim, 5 LL, <mark>6</mark> map_fn, 6 MLEL, 7 order_markers, 7 $\texttt{plot_coverage}, 8$ plot_geno, 8 plot_genoprob, 9 plot_haplofreq, 10 plot_LD, 10 plot_map, 11 plot_square, 12 rabbit_diallel, 12 rabbit_read, 13 S1_haplo, 13 S1_selection, 14