Package 'polyBreedR'

January 3, 2025

Title Genomics-assisted breeding for polyploids (and diploids)

Version 0.47

Author Jeffrey B. Endelman

Maintainer Jeffrey Endelman <endelman@wisc.edu>

Description Genomics-assisted breeding for polyploids (and diploids)

Depends R (>= 4.0)

License GPL-3

LazyData true

RoxygenNote 7.3.2

Encoding UTF-8

Imports AGHmatrix, ggplot2, ggrepel, pedigree, grDevices, utils, tidyr, Matrix, rlang, updog, randomForest, vcfR, rrBLUP, data.table

Suggests knitr, rmarkdown

VignetteBuilder knitr

Contents

Dsplit	. 2
ray2vcf	. 2
_mat	. 3
eck_ploidy	. 4
eck_trio	. 4
rt2vcf	. 5
8	. 6
no_call	. 7
t_pedigree	. 8
Γ2DS	. 8
vsA	. 9
_mat	. 10
pute	. 11
pute_L2H	. 12
pute_LA	. 13
ade	. 13
erge_impute	. 14
adXY	. 15
date_alias	. 15

array2vcf

18

vcf2csv .		•		•	•	•	•						•	•	•			•	•						•		•	•	•			•	•	•		•			16
write_vcf	•	•	•	•	•	•		•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	16

Index

```
ADsplit
```

```
Extract read counts from AD string
```

Description

Extract read counts from AD string

Usage

ADsplit(AD, ALT, n.core = 1)

Arguments

AD	array of AD strings
ALT	TRUE or FALSE (= REF)
n.core	number of cores

Details

Only valid for a single ALT allele.

Value

integer data with same dimensions as AD

array2vcf

SNP array to VCF

Description

Converts output from Genome Studio (Final Report or Wide) to VCF

Usage

```
array2vcf(array.file, map.file, model.file = NULL, ploidy, vcf.file)
```

Arguments

name of input file with SNP array allele intensities
vcf file with map positions for the markers
normal mixture model parameters for genotype calls
sample ploidy, for use with model.file
output vcf file

2

A_mat

Details

Auto-detects whether the input file is a Genome Studio Final Report, which is a "long" format with 9-row header, or in "wide" format, where all the data for each marker is one row. XY values are multiplied by 100

Genotype calls will attempt to be imported from the GS Final Report when model.file=NULL. For diploids, columns named "Allele 1 - AB" and "Allele 2 - AB" are expected. For tetraploids, a single column named "Alleles - AB" is expected.

It is assumed that the parameters in model.file lead to genotype calls for the dosage of allele B. For a VCF file, genotype calls need to be based on the dosage of ALT. By default, it is assumed that A is the REF allele. For variants where B is REF, include "REF=B" as INFO in the VCF map.file.

A_mat

Additive relationship matrix from pedigree

Description

Additive relationship matrix from pedigree

Usage

A_mat(ped, ploidy, order.ped = TRUE)

Arguments

ped	Pedigree in three column format: id, mother, father
ploidy	2 or 4
order.ped	TRUE/FALSE does the pedigree need to be ordered so that progeny follow parents

Details

This is a wrapper that prepares the pedigree in the format required for R package AGHmatrix by Amadeu et al. (2016) (cite them if you use this function). A random bivalents model for tetraploid meiosis is assumed.

Value

Additive relationship matrix (dim: indiv x indiv)

References

Amadeu et al. (2016) Plant Genome 9, doi:10.3835/plantgenome2016.01.0009

check_ploidy

Description

Fraction of simplex or triplex markers

Usage

```
check_ploidy(geno = NULL, map = NULL, vcf.file = NULL, max.missing = 0.1)
```

Arguments

geno	Genotype matrix (markers x indiv)
map	Data frame with marker map (Marker, Chrom, Position)
vcf.file	VCF file input
max.missing	maximum proportion of missing data allowed per marker

Details

For every indiv in the genotype matrix, the fraction of markers per chromosome called as simplex or triplex is calculated, which should be low for diploids. A small amount of missing genotype data can be tolerated.

As of v4.2, a VCF file can be used as input instead

Value

List containing

mat Matrix (indiv x chrom) of results
plot ggplot2 barplot

check_trio

Check markers for parent-offspring trio

Description

Check markers for parent-offspring trio

Usage

check_trio(parentage, geno, ploidy)

parentage	Data frame with three columns: id, mother, father
geno	Matrix of allele dosages: markers x indiv
ploidy	2 or 4

dart2vcf

Details

Computes the percentage of markers at which the two parents and offspring have incompatible allele dosages (for tetraploids, the random bivalents model is used). For dihaploid offspring of a single tetraploid parent, use ploidy = 4 and "haploid" for the father in parentage, as well as a diploid (0,1,2) genotype for the offspring. A small amount of missing genotype data can be tolerated.

Value

Data frame with the percentage of incompatible markers for each trio

dart2vcf

Convert DArTag to VCF

Description

Convert DArTag to VCF

Usage

```
dart2vcf(counts.file, dosage.file, vcf.file, ploidy, first.data.row = 9)
```

Arguments

counts.file	DArTag collapsed counts file
dosage.file	DArTag dosage file
vcf.file	name of VCF output file
ploidy	ploidy
first.data.row	default is 9 for DArTag format

Details

Two input files expected. counts file is the two-row collapsed counts file, whereas dosage file has one row per target, with chrom and position in columns 4 and 5. DArT reports dosage of REF, whereas VCF standard is based on dosage of ALT. The dosage is exported as GT field in VCF.

Duplicate samples are renamed by appending the "Target ID".

Description

Genotype calls for genotype-by-sequencing (GBS) data

Usage

```
gbs(
    in.file,
    out.file,
    ploidy,
    bias = TRUE,
    n.core = 1,
    chunk.size = 1000,
    silent = FALSE,
    model.fit = TRUE
)
```

Arguments

in.file	VCF input file
out.file	VCF output file
ploidy	ploidy
bias	TRUE/FALSE, whether to estimate allelic bias
n.core	number of cores
chunk.size	number of variants to process at a time
silent	TRUE/FALSE
model.fit	TRUE/FALSE

Details

VCF input file must contain AD field. Variants with more than 2 alleles are coerced to zero DP, so better to filter them out first.

Posterior mode and mean genotypes are added as GT and DS fields. GQ is also added based on probability of posterior mode. Binomial calculation uses R/updog package (Gerard et al. 2018) with "norm" prior. Previous INFO is discarded; adds NS, DP.AVG, AF.GT, AB, OD, SE.

When model.fit is FALSE, the software uses AB, OD, and SE parameters from INFO.

The input file is processed in chunks of size chunk.size.

Value

nothing

gbs

geno_call

Description

Genotype calls based on a normal mixture model

Usage

```
geno_call(
   data,
   filename,
   model.ploidy = 4L,
   sample.ploidy = 4L,
   min.posterior = 0,
   transform = TRUE
)
```

Arguments

data	matrix (markers x id) of input values for the normal mixture model
filename	CSV filename with the model parameters
model.ploidy	2 or 4 (default)
sample.ploidy	2 or 4 (default)
min.posterior	minimum posterior probability (default 0) for genotype call
transform	TRUE (default) or FALSE whether to apply arcsin square root transformation

Details

The first column of the CSV input file should be the SNP ID, followed by columns for the normal distribution means, standard deviations, and mixture probabilities. Genotype calls are based on the maximum a posteriori (MAP) method. If the posterior probability of the MAP genotype is less than min.posterior, then NA is returned for that sample. By default, an arcsin square root transformation is applied to the input values to match the approach used by R package fitPoly. To use a tetraploid mixture model for diploid samples, set sample.ploidy = 2 and model.ploidy = 4.

Value

matrix of allele dosages (0,1,2,..ploidy) with dimensions markers x individuals

get_pedigree

Description

Generate pedigree for a set of individuals

Usage

```
get_pedigree(id, pedfile, delim = ",", na.string = "NA", trim = TRUE)
```

Arguments

id	Vector of names of individuals
pedfile	Name of pedigree file
delim	Delimiter for the pedigree file (default is "," for CSV)
na.string	String used for NA in the pedigree file (default is "NA")
trim	TRUE/FALSE whether to trim pedigree (see Details)

Details

Finds ancestors of individuals in a three-column pedigree file (id,mother,father). The id column can be the identifier for an individual or cross. String matches must be exact or based on the naming convention crossID-progenyID. The returned pedigree is ordered using R package pedigree so that offspring follow parents. When trim is TRUE (default), the pedigree is trimmed to remove ancestors with only one offspring (which are not needed to compute the pedigree relationship matrix).

Value

Data frame with columns id, mother, father

GT2DS

Convert GT to ALT allele dosage (DS)

Description

Convert GT to ALT allele dosage (DS)

Usage

GT2DS(GT, diploidize = FALSE, n.core = 1)

GT	GT string
diploidize	TRUE/FALSE
n.core	number of cores

GvsA

Details

If diploidize is TRUE, data are recoded as a diploid (0,1,2).

Value

integer data with same dimensions as GT

GvsA

Plot G vs. A

Description

Plot marker-based vs. pedigree-based additive relationship coefficients

Usage

```
GvsA(
   parentage,
   G,
   A,
   filename = NULL,
   thresh.G = Inf,
   thresh.A = 0.5,
   Gmax = NULL,
   Amax = NULL
)
```

Arguments

parentage	Data frame of individuals to plot, with 3 columns: id, mother, father
G	Genomic relationship matrix
A	Pedigree relationship matrix
filename	Name of PDF file to save the results (optional for one individual)
thresh.G	Threshold above which names are displayed (default Inf)
thresh.A	Threshold above which names are displayed (default 0.5)
Gmax	Upper limit for y-axis for plotting. If NULL, maximum value in G is used.
Amax	Upper limit for x-axis for plotting. If NULL, maximum value in A is used.

Details

Useful for finding and correcting pedigree errors. If the G or A coefficient for an individual exceeds the threshold, its name is displayed in the figure. If parentage contains one individual, by default a ggplot2 variable will be returned, but the result can also be written to file. If multiple individuals are present, a filename is required.

Description

Genomic relationship matrix

Usage

```
G_mat(geno, ploidy, p.ref = NULL, method = "VR1", sep = "_", n.core = 1)
```

Arguments

geno	genotype matrix or filename
ploidy	ploidy
p.ref	optional, reference population frequency for method "VR1"
method	"VR1" or "AM"
sep	character separating id from haplotype for "AM" method
n.core	number of cores, only used with "AM"

Details

For method="VR1", Method 1 of VanRaden (2008) is used, and its polyploid extension (Endelman et al. 2018). Missing data is replaced with the population mean for each marker. If p.ref is NULL, the current population is used as the reference population. For "VR1", geno is an allele dosage matrix for bi-allelic loci (sites x indiv).

For method="AM", the Allele Matching coefficient is calculated, which is the probability that two haplotypes sampled at random (with replacement) are identical (Weir and Goudet 2017). Missing data are not allowed. For "AM", geno is a phased genotype matrix, with alleles coded as positive integers. The name of each column is the id and haplotype concatenated with a separating character, sep. This character needs to be unique (i.e., not present in id or haplotype).

Value

G matrix

References

VanRaden (2008) J. Dairy Sci 91:4414-4423.

Endelman et al. (2018) Genetics 209:77-87.

Weir and Goudet (2017) Genetics 206:2085-2103.

impute

Description

Impute missing data for bi-allelic markers

Usage

```
impute(
    in.file,
    out.file,
    ploidy,
    method,
    geno,
    min.DP = 1,
    max.missing,
    params = NULL,
    n.core = 1
)
```

Arguments

in.file	VCF input file
out.file	VCF output file
ploidy	ploidy
method	One of the following: "pop","EM","RF"
geno	One of the following: "GT", "DS"
min.DP	genotypes below this depth are set to missing (default=1)
max.missing	remove markers above this threshold, as proportion of population
params	list of method-specific parameters
n.core	multicore processing

Details

Assumes input file is sorted by position. Markers with no genetic variance are removed.

method="pop" imputes with the population mean for geno="DS" and population mode for geno="GT".

method="EM" uses parameter "tol" (default is 0.02, see rrBLUP A.mat documentation). Imputed values are truncated if needed to fall in the interval [0,ploidy].

method="RF" uses parameters "ntree" (default 100) for number of trees and "nflank" (default 100) for the number of flanking markers (on each side) to use as predictors. Because RF first uses EM to generate a complete dataset, parameter "tol" is also recognized.

impute_L2H

Description

Impute from low to high density markers by Random Forest

Usage

```
impute_L2H(
   high.file,
   low.file,
   out.file = NULL,
   params = list(),
   exclude = NULL,
   n.core = 1
)
```

Arguments

high.file	name of high density file
low.file	name of low density file
out.file	name of CSV output file for imputed data
params	list of parameters (see Details)
exclude	optional, vector of high density samples to exclude
n.core	multicore processing

Details

Argument params is a list with the following options: format, model, n.tree, n.mark. format can have values "GT" (integer dosage) or "DS" (real numbers between 0 and ploidy). model can be "class" for classification or "regress" for regression when "GT" is used; for "DS" format, only regression is permitted. n.tree is the number of trees (default = 100). n.mark is the number of markers to use as predictors (default = 100), chosen based on minimum distance to the target.

The exclude argument is useful for cross-validation.

Both VCF and CSV are allowable input file formats-they are recognized based on the file extension. For CSV, the first three columns should be marker, chrom, pos. The output file is CSV.

Any missing data are imputed separately for each input file at the outset, using the population mean (regress) or mode (class) for each marker.

Value

matrix of OOB error with dimensions markers x trees. For regression model, it is MSE.

impute_LA

Description

Impute from low to high density markers by Linkage Analysis

Usage

```
impute_LA(ped.file, high.file, low.file, low.format = "GT", out.file)
```

Arguments

ped.file	pedigree file for progeny
high.file	name of file with phased parental genotypes
low.file	name of VCF file with progeny
low.format	either "GT" (default) or "AD"
out.file	name of CSV output file

Details

You must have separately installed PolyOrigin and Julia for this function to work.

The high density file contains phased parental genotypes using 0l1 format. The first 3 columns are the genetic map in cM: marker, chrom, position. To output imputed data with physical rather than genetic map positions, including a fourth column named "bp". Subsequent columns are the phased parental genotypes.

VCF is assumed for the low-density file. The pedigree file has four columns: id, pop, mother, father, ploidy.

The output file contains the posterior maximum genotypes.

A temporary directory "tmp" is created to store intermediate files and then deleted.

madc

Multi-Allelic Haplotype Counts for potato DArTag

Description

Multi-Allelic Haplotype Counts for potato DArTag

Usage

madc(madc.file, marker)

madc.file	MADC filename
marker	Name of marker ("CDF1", "OFP20")

Details

Due to multi-allelism, for some trait markers a correct interpretation is not possible using the collapsed counts file; the MADC (Missing Allele Discovery Count) file is needed.

"CDF1" uses marker CDF1.4_chr05_4488021 to detect the 2C, 2T, and 4 alleles; all other haplo-types are treated as allele 1. Allele 3 is not detected by the assay.

"OFP20" relies on three markers. Marker OFP20_M6_CDS_994 detects OFP20.1 as Alt and most other haplotypes as Ref, but some alleles appear to be NULL. Marker OFP20_M6_CDS_171 detects allele 2 as Alt and alleles 3 and 7 as Ref; other alleles are NULL. Marker OFP20_M6_CDS_24 detects allele 8 as Ref and most other alleles as Alt. Given the high allelic diversity at this locus, this function may not work in all germplasm groups.

Value

matrix of haplotype counts

merge_impute Merge two genotype matrices and impute missing data (deprecated)

Description

Merge two genotype matrices and impute missing data by BLUP

Usage

merge_impute(geno1, geno2, ploidy)

Arguments

geno1	Genotype matrix (coded 0ploidy) with dimensions markers x indiv
geno2	Genotype matrix (coded 0ploidy) with dimensions markers x indiv
ploidy	Either 2 or 4

Details

This function is obsolete. Use impute_L2H instead.

Designed to impute from low to high density markers. The BLUP method is equivalent to Eq. 4 of Poland et al. (2012), but this function is not iterative. Additional shrinkage toward the mean is applied if needed to keep the imputed values within the range [0,ploidy]. Missing data in the input matrices are imputed with the population mean for each marker. If an individual appears in both input matrices, it is renamed with suffixes ".1" and ".2" and treated as two different individuals. Monomorphic markers are removed.

Value

Imputed genotype matrix (markers x indiv)

References

Poland et al. (2012) Plant Genome 5:103-113.

14

readXY

Description

Read SNP array intensity data

Usage

```
readXY(filename, skip = 9, output = "ratio")
```

Arguments

filename	filename
skip	number of lines to skip before the header line with the column names
output	One of three options: "ratio", "theta", "AD"

Details

The first two columns of the tab-delimited input file should be the SNP and Sample ID. Columns labeled "X" and "Y" contain the signal intensities for the two alleles. Use output to specify whether to return the ratio = Y/(X+Y) or theta = atan(Y/X)*2/pi. Option "AD" exports the XY data in the allele depth format for a VCF file ("X,Y"), with the X and Y values multiplied by 100 and rounded to the nearest integer.

Value

matrix with dimensions markers x individuals

update_alias Update names based on alias

Description

Update names based on data frame with alias and preferred name

Usage

```
update_alias(x, alias, remove.space = TRUE, filename = NULL)
```

х	Vector of names to update
alias	Data frame with two columns: first is the preferred name and second is the alias
remove.space	TRUE/FALSE
filename	update names in CSV file

Details

Parameter remove. space indicates whether blank spaces should be removed before string matching.

Value

Vector with updated names

vcf2csv	Convert VCF to CSV	

Description

Convert VCF to CSV

Usage

```
vcf2csv(vcf.file, csv.file, format)
```

Arguments

vcf.file	Input file
csv.file	Output file
format	Name of FORMAT key to export, either "GT" or "DS"

Value

none

```
write_vcf Create VCFv4.3 file
```

Description

Create VCFv4.3 file

Usage

```
write_vcf(filename, fixed, geno, other.meta = NULL)
```

Arguments

filename	VCF file name
fixed	character matrix with 8 columns: CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO
geno	named list of genotype matrices, see Details
other.meta	optional, other metadata (without ##) besides INFO and FORMAT keys

16

write_vcf

Details

Several standard INFO key are recognized: ##INFO=<ID=REF,Number=A,Type=Character,Description=\"Array allele (A/B) in reference genome\">##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of samples with data">##INFO=<ID=DP,AVG,Number=1,Type=Float,Description="Average Sample Depth">##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">##INFO=<ID=AB,Number=1,Type=Integer,Description="Total Depth">##INFO=<ID=AB,Number=1,Type=Integer,Description="Sequencing Error (PHRED)">##INFO=<ID=AF,Number=1,Type=Integer,Description="Allele Frequency">##INFO=<ID=AF,GT,Number=A,Type=Float,Description="Allele Frequency">##INFO=<ID=AF,GT,Number=A,Type=Integer,Description="Total number of alle-Integer,Description="Total number of alle-Integers" ##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alle-Integers" Every element of geno is m x n matrix (m variants, n samples), e.g., AD, GT. The FORMAT field is created from the order and names of geno. Sample names taken from colnames of geno. Metadata for geno is generated from the names of the list: ##FORMAT=<ID=GT,Number=1,Type=String,Description="Collamber=1,Type=Integer,Description="Allele Depth">##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Collamber=1,Type=String,Description="Collamber=1,Type=Integer,Description="Total number of alle-Integers" Every element of geno is m x n matrix (m variants, n samples), e.g., AD, GT. The FORMAT field is created from the order and names of geno. Sample names taken from colnames of geno. Metadata for geno is generated from the names of the list: ##FORMAT=<ID=GT,Number=1,Type=String,Description="Collamber=1,Type=Depth">##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Collamber=1,Type=String,Description="Collamber=1,Type=Depth">##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Collamber=1,Type=String,Description="Collamber=1,Type=Depth">##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Collamber=1,Type=String,Description="Collamber=1,Type=Depth">##FORMAT=<ID=DP,Number=1,Type=String,Description="Collamber=1,Type=Stri

Any additional metadata should be included without the ## prefix.

Index

A_mat, 3ADsplit, 2array2vcf, 2 check_ploidy, 4 check_trio,4 dart2vcf, 5G_mat, 10 gbs, <mark>6</mark> geno_call, 7 $\texttt{get_pedigree}, \textbf{8}$ GT2DS, 8 GvsA, 9 impute, 11impute_L2H, 12, 14 impute_LA, 13 madc, 13merge_impute, 14 readXY, 15 update_alias, 15 vcf2csv, 16 write_vcf, 16